skip to main content


Search for: All records

Creators/Authors contains: "Bom, Sthitie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In manufacturing, causal relations between components have become crucial to automate assembly lines. Identifying these relations permits error tracing and correction in the absence of domain experts, in addition to advancing our knowledge about the operating characteristics of a complex system. This paper is motivated by a case study focusing on deciphering the causal structure of a wafer manufacturing system using data from sensors and abnormality monitors deployed within the assembly line. In response to the distinctive characteristics of the wafer manufacturing data, such as multimodality, high-dimensionality, imbalanced classes, and irregular missing patterns, we propose a hierarchical ensemble approach. This method leverages the temporal and domain constraints inherent in the assembly line and provides a measure of uncertainty in causal discovery. We extensively examine its operating characteristics via simulations and validate its effectiveness through simulation experiments and a practical application involving data obtained from Seagate Technology. Domain engineers have cross-validated the learned structures and corroborated the identified causal relationships. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. In the era of big data, data-driven based classification has become an essential method in smart manufacturing to guide production and optimize inspection. The industrial data obtained in practice is usually time-series data collected by soft sensors, which are highly nonlinear, nonstationary, imbalanced, and noisy. Most existing soft-sensing machine learning models focus on capturing either intra-series temporal dependencies or pre-defined inter-series correlations, while ignoring the correlation between labels as each instance is associated with multiple labels simultaneously. In this paper, we propose a novel graph based soft-sensing neural network (GraSSNet) for multivariate time-series classification of noisy and highly-imbalanced soft-sensing data. The proposed GraSSNet is able to 1) capture the inter-series and intra-series dependencies jointly in the spectral domain; 2) exploit the label correlations by superimposing label graph that built from statistical co-occurrence information; 3) learn features with attention mechanism from both textual and numerical domain; and 4) leverage unlabeled data and mitigate data imbalance by semi-supervised learning. Comparative studies with other commonly used classifiers are carried out on Seagate soft sensing data, and the experimental results validate the competitive performance of our proposed method. 
    more » « less